
SciPy参加者へのポイント
Please come to SciPy with your computer set up for your tutorials. If you have trouble, tutorial instructors will be available to assist the morning of the tutorial from 8:30 am to 9:00 am. You may also email questions to SciPy@enthought.com.
Please bring your computer fully charged. We will have charging stations throughout the ballroom and foyer, but there will not be power at individual seats.
If you registered for beginner tutorials, please set your computers up for Tensorflow and Introduction to Visualization.
If you registered for advanced tutorials, please set your computer up for Advanced NumPy and Advanced Machine Learning.
We set “SCIPY” as a WIFI access code. Please select SSID “MandarinOriental” and go to “I HAVE AN ACESS CODE”.
April 23
Tensorflow
We will use Colab (https://colab.research.google.com) for our tutorial, a web-based Jupyter environment that includes a GPU. Attendees are welcome to install TensorFlow locally if they prefer, and use Jupyter or their favorite text editor.
Advanced NumPy
Please install
NumPy>=1.16
SciPy>=1.2
matplotlib>=3.0.3
as well as Jupyter notebooks.
April 24
Introduction to Visualization
# 事前準備 (Attendees preparation instructions)
- ノートパソコン (Windows / macOS / Linux)
- ChromeまたはFirefoxが動作する
- Python 3.6 または Python 3.7 が動作する
- 環境準備
- Python 3.6 または Python 3.7のインストール
- Jupyter Notebookのインストール
- Matplotlib、pandas、NumPyのインストール
なお、環境準備に不安のある方は、チュートリアル中に利用できるColaboratory(Google)を使って受講が出来るようにしますので、googleアカウント(gmailアカウントなど)を準備し、https://colab.research.google.com にて利用の開始を行ってください。
Advanced Machine Learning
For this tutorial the requirements are the following:
"beautifulsoup4""html5lib" "jupyter" "lxml" "matplotlib" "nltk" "numpy" "openpyxl" "pandas>=0.23.0" "pandas<0.24.0" "pandas-datareader" "pip" "pyqt" "pytables" "requests" "scikit-learn>=0.20.0" "scikit-learn<0.21.0" "scikits.image>0.14.0" "scipy" "seaborn" "setuptools" "spacy" "spacy-en-core-web-sm" "sqlalchemy" "statsmodels" "xlrd"
If you're using Enthought EDM [1], you can download the bundle for you platform below, and import it as the "ml-tutorial" environment with:
$ edm envs import ml-tutorial -f PATH_TO_BUNDLE
- http://storage.enthought.com/training/MLW-2.5.0-py3.6-win-x86_64.bundle
- http://storage.enthought.com/training/MLW-2.5.0-py3.6-osx-x86_64.bundle
- http://storage.enthought.com/training/MLW-2.5.0-py3.6-rh6-x86_64.bundle
[1]: https://www.enthought.com/product/enthought-deployment-manager/#download-edm
If you're using conda, you can create the "ml-tutorial" environment with:
conda create -n ml-tutorial python=3 "beautifulsoup4" "html5lib" "jupyter" "lxml" "matplotlib" "nltk" "numpy" "openpyxl" "pandas>=0.23.0" "pandas<0.24.0" "pandas-datareader" "pip" "pyqt" "pytables" "requests" "scikit-learn>=0.20.0" "scikit-learn<0.21.0" "scikits.image>0.14.0" "scipy" "seaborn" "setuptools" "spacy" "spacy-en-core-web-sm" "sqlalchemy" "statsmodels" "xlrd"
質問は?
その他ご質問がございましたら、SciPy Japanの登録デスクまでお問い合わせください。
Email: